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Abstract.

In an important recent paper, Yedidia, Freeman, and Weiss [7] showed that there is
a close connection between the belief propagation algorithm for probabilistic infer-
ence and the Bethe-Kikuchi approximation to the variational free energy in statistical
physics. In this paper, we will recast the YFW results in the context of the “generalized
distributive law” [1] formulation of belief propagation. Our main result is that if the
GDL is applied to junction graph, the fixed points of the algorithm are in one-to-one
correspondence with the stationary points of a certain Bethe-Kikuchi free energy. If the
junction graph has no cycles, the BK free energy is convex and has a unique stationary
point, which is a global minimum. On the other hand, if the junction graph has cycles,
the main result at least shows that the GDL is trying to do something sensible.

1. Introduction.

The goals of this paper are twofold: first, to obtain a better understanding of iterative,
belief propagation (BP)-like solutions to the general probabilistic inference (PI) prob-
lem when cycles are present in the underlying graph G; and second, to design improved
iterative solutions to PI problems. The tools we use are also twofold: the “generalized
distributive law” formulation of BP [1], and the recent results of Yedidia, Freeman,
and Weiss [6,7], linking the behavior of BP algorithms to certain ideas from statistical
physics.

If G hs no cycles, it is well known that BP converges to an exact solution to the
inference problem in a finite number of steps [1, 3]. But what if G has cycles? Ex-
perimetally, BP is often seen to work well in this situation, but there is little theoretical
understanding of why this should be so. In this paper, by recasting the YFW results,
we shall see (Theorem 2, Section 5) that if the GDL converges to a given set of “beliefs,”
these beliefs correspond to a zero gradient point (conjecturally a local minimum) of the
“Bethe-Kikuchi free energy,” which is a function whose global minimum is an approxi-
mation to the solution to the inference problem. In short, even G has cycles, the GDL
still does something sensible. (If G has no cycles, the BK free energy is convex and the
only stationary point is a global minimum,, which is an exact solution to the inference
problem.) Since we also show that a given PI problem can typically be represented by
many different junction graphs (Theorem 1 and its Corollary, Section 2), this suggests
that there can be many good iterative solutions to the problem. We plan to explore
these possibilities in a follow-up paper.
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Here is an outline of the paper. In Section 2, we introduce the notion of a junction
graph, which is essential for the entire paper. In Section 3, we describe a generic PI
problem, and the “generalized distributive law,” which is an iterative, BP-like algorithm
for solving the PI problem by passing messages on a junction graph. In Section 4 we
state and prove a fundamental theorem from statistical physics, viz., that the variational
free energy is always greater than or equal to the free energy, with equality if and only
if the system is in Boltzmann equilibrium. In Section 5, we show that the PI problem
introduced in Section 3 can be recast as a free energy computation. We then show how
this free energy computation can be simplified by using an approximation, the Bethe-
Kikuchi approximation (which is also based on a junction graph), to the variational
free energy. Finally, we prove our main result, viz., the fixed points of the GDL are in
one-to-one correspondence with the stationary points of the Bethe-Kikuchi free energy
(Theorem 2, Section 5).

2. Junction Graphs.

Following Stanley [4], we let [n] = {1, 2, . . . , n}. An [n]-junction graph is a labelled,
undirected graph G = (V, E, L), in which each vertex v ∈ V and each edge e ∈ E is
labelled with a subset of [n], denoted by L(v), and L(e), respectively. If e = {v1, v2} is
an edge joining the vertices v1 and v2, we require that

L(e) ⊆ L(v1) ∩ L(v2).

Furthermore, we require that for each k ∈ [n], the subgraph of G consisting only of the
vertices and edges which contain k in their labels, is a tree. Figures 1 through 4 give
examples of junction graphs.

If R = {R1, . . . , RM} is a collection of subsets of [n], we say that an [n]-junction
graph G = (V, E, L) is a junction graph for R if {L(v1), . . . , L(vM )} = R. In [1] it was
shown that there is not always a junction tree for an arbitrary R. The situation for
junction graphs is more favorable, as the following theorem shows.
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Figure 1. A junction graph for R =
{{1, 2, 4}, {1, 3}, {1, 4}, {2}}. (This is a junction tree.)

Theorem 1. For any collection R = {R1, . . . , RM} of subsets of [n], there is a junction
graph for R.

Proof: Begin with a complete graph G with vertex set V = {v1, . . . , vM}, vertex labels
L(vi) = Ri, and edge labels L(vi, vj) = Ri ∩ Rj . For each k ∈ [n], let Gk = (Vk, Ek)
be the subgraph of G consisting of those vertices and edges whose label contains k.
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Figure 2. A junction graph for
R = {{1, 2, }, {2, 3}, {3, 4}, {1, 4}}.

1 2 3

4 5 6

1 4 2 5 3 6

1 2 3

4 5 6

Figure 3. A junction graph for
R = {{1, 2, 3}, {1, 4}, {2, 5}, {3, 6}, {4, 5, 6}}.
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Figure 4. A junction graph for
R = {{1, 2, 3}, {1, 3, 4}, {2, 3, 5}, {3, 4, 5}}.)

Clearly Gk is a complete graph, since if k ∈ L(vi) = Ri and k ∈ L(vj) = Rj , then
k ∈ L(vi) ∩ L(vj) = Ri ∩ Rj . Now let Tk be any spanning tree of Gk, and delete k
from the labels of all edges in Ek except those in Tk. The resulting labelled graph is a
junction graph for R.

Using the fact that a complete graph on m vertices has exactly mm−2 spanning
trees [4, Prop. 5.3.2], we have the following corollary.

Corollary. If mi denotes the number of sets Rj such that i ∈ Rj , then the number of
junction graphs for R is

∏n
i=1 mmi−2

i .



3. Probabilistic Inference and Belief Propagation.
Let A = {0, 1, . . . , q − 1} be a finite set with q elements. We represent the elements
of An as vectors of the form x = (x1, x2, . . . xn), with xi ∈ A, for i ∈ [n]. If R ⊆ [n],
we denote by AR the set An projected onto the coordinates indexed by R. A typical
element of AR willl be denoted by xR. If p(x) is a probability distribution on An,
pR(xR) denotes p(x) marginalized onto R, i.e.,

pR(xR) =
∑

xRc∈ARc

p(x).

With R = {R1, . . . , RM} as in Section 2, let {αR(xR)}R∈R be a family of noneg-
ative “local kernels,” i.e., αR(xR) is a nonnegative real number for each xR ∈ AR, and
define the global probability density function

(3.1) p(x) =
1
Z

∏

R∈R
αR(xR),

where Z is the global normalization constant, i.e.,

(3.2) Z =
∑

x∈An

∏

R∈R
αR(xR).

The corresponding probabilistic inference problem is to compute Z, and the marginal
densities

pR(xR) =
∑

xRc

p(x) =
1
Z

∑

xRc

∏

R∈R
αR(xR).

for one or more values of R.

If G = (V, E, L) is a junction graph for R, the generalized distributive law [1]
is a message-passing algorithm on G for solving the PI problem, either exactly or
approximately. It can be described by its messages and beliefs. If {v, u} is an edge
of G, a message from v to u, denoted by mv,u(xL(v,u)), is a nonnegative function on
AL(v,u). Similarly if v is a vertex of G, the belief at v, denoted by bv(xL(v)), is a
probability density on AL(v).

Initially, mv,u(xL(v,u)) ≡ 1 for all {v, u} ∈ E. The message update rule is

(3.3) mv,u(xL(v,u)) ← K
∑

xL(v)\L(v,u)

αv(xL(v))
∏

u′∈N(v)\u

mu′,v(xL(u′,v)),

where K is any convenient constant. (In (3.3), N(v) denotes the neighbors of v, i.e.,
N(v) = {u : {u, v} ∈ E}.) At any stage, the current beliefs at the vertices v and edges
e = {u, v} are defined as follows:

bv(xL(v)) =
1
Zv

αv(xL(v))
∏

u∈N(v)

mu,v(xL(u,v)).(3.4)

be(xL(e)) =
1
Ze

mu,v(xL(e))mv,u(xL(e)),(3.5)



where Zv and Ze are the appropriate local normalizing constants, i.e.,

Zv =
∑

xL(v)

αv(xL(v))
∏

u∈N(v)

mu,v(xL(u,v))(3.6)

Ze =
∑

xL(e)

mu,v(xL(e))mv,u(xL(e)).(3.7)

The hope is that as the algorithm evolves, the beliefs will converge to the desired
marginal probabilities:

bv(xL(v))
?→ pL(v)(xL(v))

be(xL(e))
?→ pL(e)(xL(e)).

If G is a tree, the GDL converges as desired in a finite number of steps [1]. Furthermore,
a result of Pearl [3] says that if G is a tree, then the global density p(x) defined by (3.1)
factors as follows:

p(x) =
∏

v∈V pv(xL(v))
∏

e∈E pe(xL(e))
.

Comparing this to the definition (3.1), we see that the global normalization constant
Z defined in (3.2) can be expressed in terms of the local normalization constants Zv

and Ze defined in (3.6) and (3.7) as follows:

(3.8) Z =
∏

v Zv∏
e Ze

.

But what if G is not a tree? In the remainder of the paper, we shall see that
if the GDL converges to a given set of beliefs, these beliefs represent a zero gradient
point (conjecturally a local minimum) of a function whose global minimum represents
an approximation to the solution to the inference problem. In short, even G has cycles,
the GDL still does something sensible. To see why this is so, we must use some ideas
from statistical physics, which we present in the next section.

4. Free Energy and the Boltzmann Distribution.

Imagine a system of n identical particles, each of which can have one of q different
“spins” taken from the set A = {0, 1, . . . , q−1}. If xi denotes the spin of the ith particle,
we define the state of the system as the vector x = (x1, x2, . . . xn). In this way, the set
An can be viewed as a discrete “state space” S. Now suppose E(x) = E(x1, x2, . . . , xn)
represents the energy of the system (the Hamiltonian) when it is in state x. The
corresponding partition function1 is defined as

(4.1) Z =
∑

x∈S

e−E(x),

1 In fact, the partition function is also a function of a parameter β, the inverse
temperature: Z = Z(β) =

∑
x∈S e−βE(x). However, in this paper, we will assume

β = 1, and omit reference to β.



and the free energy of the system is

F = − lnZ.

The free energy is of fundamental importance in statistical physics [8, Chapter 2],
and physicists have developed a number of ways for calculating it, either exactly or
approximately. We will now briefly describe some of these techniques.

Suppose p(x) represents the probability of finding the system in state x. The
corresponding variational free energy is defined as

F̃ (p) = U(p) − H(p),

where U(p) is the average, or internal, energy:

(4.2) U(p) =
∑

x∈S

p(x)E(x),

and H(p) is the entropy:
H(p) = −

∑

x∈S

p(x) ln p(x).

We define the Boltzmann, or equilibrium, distribution as follows:

(4.3) pB(x) =
1
Z

e−E(x),

A routine calculation shows that

F̃ (p) = F + D(p ‖ pB),

where D(p ‖ pB) is the Kullback-Leibler distance between p and pB . It then follows
from [2, Theorem 2.6.3] that

F̃ (p) ≥ F,

with equality if and only if p(x) = pB(x), which is a classical result from statistical
physics [5]. In other words,

F = min
p(x)

F̃ (p)(4.4)

pB(x) = argmin
p(x)

F̃ (p).(4.5)

5. The Bethe-Kikuchi Approximation to the Variational Free Energy.
According to (4.4), one method for computing the free energy F is to use calculus to
minimize the variational free energy F̃ (p) over all distributions p(x). However, this
involves mimimizing a function of the qn variables {p(x) : x ∈ An} subject to the
constraint

∑
x p(x) = 1, which is not attractive, unless qn is quite small.

Another approach is to estimate F from above by minimizing F̃ (p) over a restricted
class of probability distributions. This is the basic idea underlying the mean field
approach [5; 8, Chapter 4] in which only distributions of the form

p(x) = p1(x1)p2(x2) · · · pn(xn)



are considered. The Bethe-Kikuchi approximations, which we will now describe, can
be thought of as an elaboration on the mean field approach.

In many cases of interest, the energy is determined by relatively short-range inter-
actions, and the Hamiltonian assumes the special form

(5.1) E(x) =
∑

R∈R
ER(xR),

where R is a collection of subsets of [n], as in Sections 2 and 3. If E(x) decomposes in
this way, the Boltzmann distribution (4.3) factors:

(5.2) pB(x) =
1
Z

∏

R∈R
e−ER(xR).

Similarly, the average energy (cf. (4.2)) can be written as

(5.3) U(p) =
∑

R∈R
U(pR),

where

(5.4) U(pR) =
∑

xR

pR(xR)ER(xR).

Thus the average energy U(p) depends on the global density p(x) only through the
marginals {pR(xR)}.

One might hope for a similar simplification for H(p):

(5.5) H(p)
?≈

∑

R∈R
H(pR),

where
H(pR) = −

∑

xR

pR(xR) log pR(xR).

For example, if
R = {{1, 2, 3}, {1, 4}, {2, 5}, {3, 6}, {4, 5, 6}}

then the hope (5.5) becomes

H(X1, X2, X3, X4, X5, X6)
?≈

H(X1, X2, X3) + H(X1, X4) + H(X2, X5) + H(X3, X6) + H(X4, X5, X6),(5.6)

but this is clearly false, if only because the random variables Xi occur unequally on
the two sides of the equation. This is where the junction graph comes in. If, instead of
(5.5) we substitute the Bethe-Kikuchi approximation to H(p) (relative to the junction
graph G = (V, E, L)):

(5.7) H(p) ≈
∑

v∈V

H(pv) −
∑

e∈E

H(pe),



where for simplicity we write pv instead of pL(v), etc., the junction graph condition
guarantees that each Xi is counted just once. (In a tree, the number of vertices is
exactly one more than the number of edges.) For example, using the junction graph of
Figure 1, (5.7) becomes

H(X1, X2, X3, X4, X5, X6)
?≈

H(X1, X2, X3) + H(X1, X4) + H(X2, X5) + H(X3, X6) + H(X4, X5, X6)
− H(X1) − H(X2) − H(X3) − H(X4) − H(X5) − H(X6),(5.8)

which is more plausible (though it needs to be investigated by an information theorist).

In any case, the Bethe-Kikuchi approximation with respect to the junction graph
G = (V, E, L) to the variational free energy F̃ (p) is defined as (cf. (5.3) and (5.7))

(5.9) F̃BK(p) =
∑

v∈V

UL(v)(pv) −
(

∑

v∈V

H(pv) −
∑

e∈E

H(pe)

)

.

The important thing about the BK approximation F̃BK(p) in (5.9) is that it depends
only on the marginal probabilities {pv(xL(v))}, {pe(xL(e))}, and not on the full global
distribution p(x). To remind ourselves of this fact, we will write F̃BK({pv, pe}) instead
of F̃BK(p).

One plausible way to estimate the free energy is thus (cf. (4.4)) F ≈ FBK , where

(5.10) FBK = min
{bv,be}

F̃BK({bv, be}),

where the bv’s and the be’s are trial marginal probabilites, or “beliefs.” The BK “ap-
proximate beliefs” are then the optimizing marginals:

(5.11) {bBK
v , bBK

e } = argmin
{bv,be}

F̃BK({bv, be}).

Computing the minimum in (5.10) is still not easy, but we can begin by setting up
a Lagrangian:

L =
∑

v∈V

∑

xL(v)

bv(xL(v))EL(v)(xL(v))

+
∑

v∈V

∑

xL(v)

bv(xL(v)) log bv(xL(v))

−
∑

e∈E

∑

xL(e)

be(xL(e)) log be(xL(e))

+
∑

(u,v)∈E

∑

xL(u,v)

λu,v(xL(u,v))




∑

xL(v)\L(u,v)

bv(xL(v)) − be(xL(u,v))





+
∑

v∈V

µv




∑

xL(v)

bv(xL(v)) − 1





+
∑

e∈E

µe




∑

xL(e)

be(xL(e)) − 1



 .



Here the Lagrange multiplier λu,v(xL(u,v)) enforces the constraint
∑

xL(v)\L(u,v)

bv(xL(v)) = be(xL(u,v)),

the Lagrange multiplier µv enforces the constraint
∑

xL(v)

bv(xL(v)) = 1,

and the Lagrange multiplier µe enforces the constraint
∑

xL(e)

be(xL(e)) = 1.

Setting the partial derivative of L with respect to the variable bv(xL(v)) equal to
zero we obtain, after a little rearranging,

(5.12) log bv(xL(v)) = kv − EL(v)(xL(v)) −
∑

u∈N(v)

λv,u(xL(u,v)),

(where kv = −1 − µv) for all vertices v and all choices for xL(v). Similarly, setting the
partial derivative of L with respect to the variable be(xL(e)) equal to zero we obtain

(5.13) log be(xL(e)) = ke − λv,u(xL(e)) − λu,v(xL(e)),

(where ke = −1 + µe) for all edges e = {u, v} and all choices for xL(e). The conditions
(5.12) and (5.13) are necessary conditions for the attainment of the minimum in (5.10).
A set of beliefs and Lagrange multipliers satisfying these conditions may correspond
to a local minimum, a local maximum, or neither. In every case, however, we have a
stationary point for F̃BK .

Given a stationary point of F̃BK , if we define local kernels αL(v)(xL(v)) and mes-
sages mu,v(xL(u,v)) as follows:

Ev(xL(v)) = − lnαL(v)(xL(v))(5.14)
λv,u(xL(v,u)) = − lnmu,v(xL(u,v)),(5.15)

the stationarity conditions (5.12) and (5.13) then become

bv(xL(v)) = KvαL(v)(xL(v))
∏

u∈N(v)

mu,v(xL(u,v))(5.16)

be(xL(e)) = Kemu,v(xL(u,v))mv,u(xL(v,u)),(5.17)

which arre the same as the GDL belief rules (3.4) and (3.5). (The constants Kv = ekv

and Ke = eke are uniquely determined by the conditions
∑

xL(v)
bv(xL(v)) = 1 and

∑
xL(e)

be(xL(e)) = 1.)

Next, if we choose u ∈ N(v), and sum (5.16) over all xL(v)\L(v,u), thereby obtaining
an expression for be(xL(e)), where e = {u, v}, and then set the result equal to the right
side of (5.17), we obtain, after a short calculation,

(5.18) mv,u(xL(u,v)) =
Kv

Ke

∑

xL(v)\L(v,u)

αL(v)(xL(v))
∏

u′∈N(v)\u

mu′,v(xL(u,v)),

which is the same as the GDL message update rule (3.3). In other words, we have
proved



Theorem 2. If a set of beliefs {bv, be} and Lagrange multipliers {λu,v} is a stationary
point for the BK free energy defined on G with energy function given by (5.1), then
these same beliefs, together with the set of messages defined by (5.15), are a fixed point
for the GDL of G defined by the local kernels defined by (5.14). Conversely, if a set of
beliefs {bv, be} and messages {mu,v} is a fixed point of the GDL on a junction graph
G with local kernels {αR(xR)}, then these same beliefs, together with the Lagrange
multipliers {λu,v} defined by (5.15) are a stationary point for the BK free energy defined
on G with energy function defined by (5.14).

Finally we state the following two theorems without proof.

Theorem 3. If |V | ≥ |E| (in particular, if G is a tree or if G has only one cycle), then

F̃BK is convex ∪, and hence has only one stationary point, which is a global minimum.

Theorem 4. The value of F̃BK corresponding to a stationary point depends only on
the Lagrange multipliers {kv, ke}, as follows:

F̃BK =
∑

v

kv −
∑

e

ke.

(This result should be compared to (3.8).)
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