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Abstract: In this paper we will introduce an
ensemble of codes called irregular repeat-accumulate
(IRA) codes. IRA codes are a generalization of the
repeat-accumluate codes introduced in [1], and as such
have a natural linear-time encoding algorithm. We
shall prove that on the binary erasure channel, IRA
codes can be decoded reliably in linear time, using
iterative sum-product decoding, at rates arbitrarily
close to channel capacity. A similar result appears
to be true on the AWGN channel, although we have
no proof of this. We illustrate our results with nu-
merical and experimental examples.
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1. INTRODUCTION

With the hindsight provided by the past seven
years of research in turbo-codes and low-density parity-
check codes, one is tempted to propose the follow-
ing problem as the final problem for channel coding
researchers: For a given channel, find an ensemble
of codes with (1) a linear-time encoding algorithm,
and (2) which can be decoded reliably in linear time
at rates arbitrarily close to channel capacity. For
turbo-codes, both parallel and serial, (1) holds, but
according to the recent work by Divsalar, Dolinar,
and Pollara [7], on the AWGN channel there ap-
pears to be a gap, albeit usually not a large one,
between channel capacity and the iterative decod-
ing thresholds for any turbo ensemble. For LDPC
codes, the natural encoding algorithm is quadratic
in the block length, and from the work of Richard-
son and Urbanke [2] we know that for regular LDPC
codes, on the binary symmetric and AWGN channels
there is a gap between capacity and the iterative de-
coding thresholds. On the positive side, however,
Luby, Shokrollahi et at. [3], [4], [8], have established
the remarkable fact that on the binary erasure chan-
nel irregular LDPC codes satisfy (2). Recent work
by Richardson, Shokrollahi and Urbanke [5] shows
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that on the AWGN channel, irregular LDPC codes
are markedly better than regular ones, but whether
or not they can reach capacity is not yet known. In
summary, as yet there is no known noisy channel for
which the final problem has been solved, although re-
searchers are very close on the AWGN channel and
extremely close on the binary erasure channel.

In this paper, we will introduce a promising class
of codes called irregular repeat-accumulate codes, which
generalizes the repeat-accumulate codes of [1]. After
defining the codes in Section 2, and observing that
they have a simple linear-time encoding algorithm,
in Section 3, using the powerful Richarson-Urbanke
method [2], we will prove rigorously that IRA codes
solve the final problem for the binary erasure chan-
nel. In Section 4, we will discuss, less rigorously,
the performance of IRA codes on the AWGN chan-
nel, and show that their performance is remarkably
good.

2. DEFINTION OF IRA CODES

Figure 1 shows a Tanner graph of an IRA code
with parameters (f1, . . . , fJ ; a), where fi ≥ 0,

∑
i fi =

1 and a is a positive integer. The Tanner graph is
a bipartite graph with two kinds of nodes: variable
nodes (open circles) and check nodes (filled circles).
There are k variable nodes on the left, called informa-
tion nodes; there are r = (k

∑
i ifi)/a check nodes;

and there are r variable nodes on the right, called
parity nodes. Each information node is connected to
a number of check nodes: the fraction of informa-
tion nodes connected to exactly i check nodes is fi.
Each check node is conected to exactly a information
nodes. These connections can made in many ways,
as indicated in Figure 1 by the “arbitrary permuta-
tion” of the ra edges joining information nodes and
check nodes. The check nodes are connected to the
parity nodes in the simple zigzag pattern shown in
the figure.

If the “arbitrary permutation” in Figure 1 is fixed,
the Tanner graph represents a binary linear code
with k information bits (u1, . . . , uk) and r parity bits
(x1, . . . , xr), as follows. Each of the information bits
is associated with one of the information nodes; and
each of the parity bits is associated with one of the
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Figure 1: Tanner graph for IRA code with parame-
ters (f1, . . . , fJ ; a).

parity nodes. The value of a parity bit is determined
uniquely by the condition that the mod-2 sum of the
values of the variable nodes connected to each of the
check nodes is zero. To see this, let us convention-
ally set x0 = 0. Then if the values of the bits on
the ra edges coming out of the permutation box are
(v1, . . . , vra), we have the recursive formula

xj = xj−1 +
a∑
i=1

v(j−1)a+i, (1)

for j = 1, 2, . . . , r. This is in effect the encoding algo-
rithm, and so if a is fixed and n→∞, the encoding
complexity is O(n).

There are two versions of the IRA code in Fig-
ure 1: the nonsystematic and the systematic verisons.
The nonsystematic version is an (r, k) code, in which
the codeword corresponding to the information bits
(u1, . . . , uk) is (x1, . . . , xr). The systematic version
is a (k + r, k) code, in which the codeword is

(u1, . . . , uk;x1, . . . , xr).

The rate of the nonsystematic code is easily seen to
be

Rnsys =
a∑
i ifi

, (2)

whereas for the systematic code the rate is

Rsys =
a

a +
∑
i ifi

(3)

For example, the original RA codes are nonsys-
tematic IRA codes with a = 1 and exactly one fi
equal to 1, say fq = 1, and the rest zero, in which
case (2) simplifies to R = 1/q. (However, in this
paper we will be concerned almost exclusively with
systematic IRA codes.)

In an iterative sum-product message-passing de-
coding algorithm, all messages are assumed to be log-
likelihood ratios, i.e., of the form m = log(p(0)/p(1)).
The outgoing message from a variable node u to a
check node v represents information about u, and a
message from a check node u to a variable node v
represents information about u. Intially, messages
are sent from variable nodes which represent trans-
mitted symbols.

The outgoing message from a node u to a node v
depends on the incoming messages from all neighbors
w of u except v. If u is a variable message node, this
outgoing message is

m(u→ v) =
∑
w �=v

m(w → u) + m0(u), (4)

where m0(u) is the log-likelihood message associated
with u. (If u is not a codeword node, this term is ab-
sent.) If u is a check node the corresponding formula
is [10]

tanh
m(u→ v)

2
=

∏
w �=v

tanh
m(w → u)

2
. (5)

3. IRA CODES ON THE BINARY
ERASURE CHANNEL

The sum-product algorithm defined in equations (4)
and (5) simplifies considerably on the binary erasure
channel (BEC). The BEC is a binary input channel
with three output symbols, a 0, a 1 and “erasure.”
The input symbol is received as an erasure with prob-
ability p and is received correctly with probability
1− p. It is important to note that no errors are ever
made on this channel.

It is not difficult to see that the messages defined
in (4) and (5) can assume only three values on the
BEC, viz. +∞, −∞ or 0, corresponding to a vari-
able value 0, 1, or “unknown.” No errors can occur
during the running of the algorithm; if a message is
±∞, the corresponding variable is guaranteed to be
0 or 1, respectively. The operations at the nodes in
the graph given by eqns (4) and (5) can be stated
much more simply and intutively in this case. At a
variable node, the outgoing message is equal to any
non-erasure incoming message, or an erasure if all
incoming messages are erasures. At a check node,
the outgoing message is an erasure if any incoming
message is an erasure, and otherwise is the binary
sum of all incoming messages.



3.1. Notation

In this section and the next, it will be convenient
to use a slightly different representation for an IRA
code than the one used in Section 2. Firstly, we will
begin with the assumption that the degrees of both
the information nodes and the check nodes are non-
constant, though we will soon restrict attention to
the “right-regular” case, in which the check nodes
have constant degree.

Secondly, let λi be the fraction of edges between
the information and the check nodes that are adja-
cent to an information node of degree i, and let ρi
be the fraction of such edges that are adjacent to
a check node of degree i + 2 (i.e. one which is ad-
jacent to i information nodes). We will use these
edge fractions λi and ρi to represent the IRA code
rather than the corresponding node fractions. We
define λ(x) =

∑
i λix

i−1 and ρ(x) =
∑
i ρix

i−1 to be
the generating functions of these sequences. The pair
(λ, ρ) is called a degree distribution. It is quite easy to
convert between the two representations. We demon-
strate the conversion with the information node de-
grees. Let the fi’s be as defined in Section 2 and let
L(x) =

∑
i fix

i. Then we have

fi =
λi/i∑
j λj/j

, (6)

L(x) =
∫ x

0

λ(t)dt/
∫ 1

0

λ(t)dt. (7)

The rate of the systematic IRA code (we shall be
dealing only with these) given by this degree distri-
bution is given by

Rate =

(
1 +

∑
j ρj/j∑
j λj/j

)−1

(8)

(This is an easy exercise. For a proof, see [8].)

3.2. Fixed point analysis of iterative
decoding

In [2], it was shown that if for a code ensemble,
the probability of the depth-l neighborhood of an edge
(in the Tanner graph) being cycle-free goes to 1 as
the length of the code goes to infinity (we will call
this condition the cycle-free condition), then density
evolution gives an accurate estimate of the bit error
rate after l iterations, again as the length of the codes
goes to infinity. In density evolution, we evolve the
probability density of the messages being passed ac-
cording to the operations being performed on them,
assuming that all incoming messages are indepen-
dent (which is true if the depth-l neighbourhood is
tree-like). The cycle-free condition does indeed hold

for IRA codes. The proof of this fact is almost ex-
actly the same as in the irregular LDPC codes case,
which was done in [2].

Now, in the case of the erasure channel, we have
seen that the messages are only of three types, so in
effect we have a discrete density function, and the
probability of error is merely the probability of era-
sure. With this in mind, we will now study the evolu-
tion of the erasure probability, and derive conditions
which guarantee that it goes to zero as the number
of iterations goes to infinity. Under these conditions
iterative decoding will be successful in the sense of
[2], i.e., it will achieve arbitrarily small BERs, given
enough iterations and long enough codes.

Let p be the channel probability of erasure. We
will iterate the probability of erasure along the edges
of the graph during the course of the algorithm. Let
x0 be the probability of erasure on an edge from an
information node to a check node, x1 the probability
of erasure on an edge from a check node to a parity
node, x2 the probability of erasure on an edge from
a parity node to a check node, and x3 the probabil-
ity of erasure on an edge from a check node to an
information node. The initial probability of erasure
on the message bits is p.

We now assume that we are at a fixed point of
the decoding algorithm and solve for x0. We get the
following equations:

x1 = 1− (1− x2)R(1− x0), (9)
x2 = px1, (10)
x3 = 1− (1− x2)2ρ(1− x0), (11)
x0 = pλ(x3). (12)

where R(x) is the polynomial in which the coefficient
of xi denotes the fraction of check nodes of degree i.
R(x) is given by (cf. eq. (7))

R(x) =

∫ x
0
ρ(t)dt∫ 1

0
ρ(t)dt

(13)

We eliminate x1 from the first two of these equations
to get x2 in terms of x0 and then keep substituting
forwards to get an equation purely in x0, henceforth
denoted by x. We thereby obtain the following equa-
tion for a fixed point of iterative decoding:

pλ

(
1−

[
1− p

1− pR(1− x)

]2

ρ(1− x)

)
= x. (14)

If this equation has no solution in the interval (0, 1],
then iterative decoding must converge to probability
of erasure zero. Therefore, if we have



pλ

(
1−

[
1− p

1− pR(1− x)

]2

ρ(1− x)

)
< x, ∀x 	= 0.

(15)
then in the sense of [2], iterative decoding is success-
ful.

3.3. Capacity-achieving sequences of
degree distributions

We will now derive sequences of degree distribu-
tions that can be shown to achieve channel capacity.
First, we restrict attention to the case ρ(x) = xa−1

for some a ≥ 1, since it turns out that we can achieve
capacity even with this restriction. In this case,
R(x) = xa, and the condition for convergence to zero
BER now becomes

pλ

(
1−

[
1− p

1− p(1− x)a

]2

(1− x)a−1

)
< x, ∀x 	= 0

(16)
We now make the following new definitions

fp(x)
�
= 1−

[
1− p

1− p(1− x)a

]2

(1− x)a−1(17)

hp(x)
�
= 1−

[
1− p

1− p(1− x)a

]2

(1− x)a (18)

gp(x)
�
= h−1

p (x) (19)

Notice that fp(x), hp(x) and gp(x) are all mono-
tonic functions in [0, 1] and attain the values 0 at 0
and 1 at 1. In addition, hp(x) can be inverted by
hand (by making the substitution (1− x)a = y) and
it can be shown that gp(x) has a power series ex-
pansion around 0 with non-negative coefficients. Let
this expansion be gp(x) =

∑
i gp,ix

i.
Now, the condition (16) can now be rewritten as

pλ(fp(x)) < x, ∀x 	= 0 (20)

which can be rewritten as

λ(x) <
f−1
p (x)
p

(21)

We make the following choice of λ(x):

λ(x) =
1
p

(
N−1∑
i=1

gp,ix
i + εxN

)
(22)

where 0 < ε < gp,N and
∑N−1
i=1 gp,i + ε = p. Such a

choice of N and ε exists and is unique since the gp,i’s
are non-negative and

∑∞
i=1 gp,i = gp(1) = 1. For this

choice of λ(x), we have

pλ(x) < gp(x) = h−1
p (x) < f−1

p (x) ∀x 	= 0 (23)

where the last inequality follows because fp(x) <
hp(x) ∀x 	= 0.

Thus, the condition (21) for BER going to zero
is satisfied and the degree distributions we have thus
defined yield codes with thresholds that are greater
than or equal to p. We now wish to compute the
rate of these codes in the limit as a → ∞ to show
that they achieve channel capacity. The rate of the
code is given by eq. (8) which simplifies to (1 +
(a

∑
i λi/i)

−1)−1 in the right-regular case. Now,

lim
a→∞

a
∑
i

λi
i

= lim
a→∞

a

(
N−1∑
i=1

gp,i
i

+
ε

N

)
(24)

We also have

lim
a→∞

a

∞∑
i=N

gp,i
i
≤ lim
a→∞

a

N

∞∑
i=N

gp,i ≤ lim
a→∞

a

N
= 0

(25)
where the last equality is a property of the function
gp(x) and is also proved by manual inversion of hp(x).
We therefore have

lim
a→∞

a
∑
i

λi
i

= lim
a→∞

a

∞∑
i=1

gp,i
i

= lim
a→∞

a

∫ 1

0

gp(x)dx

= a

(
1−

∫ 1

0

hp(x)dx
)

= a

∫ 1

0

(
1− p

1− pxa

)2

xadx.

The integrand on the right can be expanded in a
power series with non-negative coefficients, with the
first non-zero coefficient being that of xa. Keeping
in mind that we are integrating this power series, it
is easy to see that

a

a + 1

∫ 1

0

(
1− p

1− pxa

)2

xa−1dx

< 1−
∫ 1

0

hp(x)dx (26)

<

∫ 1

0

(
1− p

1− pxa

)2

xa−1dx.

Both bounds in the above equation can be computed
easily and both tend to (1−p)/p in the limit of large
a. Plugging this result into the formula for the rate,
we finally get that the rate tends to 1−p in the limit
of large a, which is indeed the capacity of the BEC.

Thus the sequence of degree distributions given
in eq. (22) does indeed achieve channel capacity.



3.4. Some numerical results

We have seen that the condition for BER go-
ing to zero at a channel erasure probability of p is
pλ(x) < f−1

p (x) ∀x 	= 0. We later enforced a stronger
condition, namely pλ(x) < h−1

p (x) = gp(x) ∀x 	= 0
and derived capacity-chieving degree sequences sat-
isfying this condition. The reason we needed to en-
force the stronger condition was that h−1

p (x) = gp(x)
has non-negative power-series coefficients, while the
same cannot be said for f−1

p (x). However, from (26)
we see that enforcing this stronger condition costs us
a factor of 1−a/(a+1) = 1/(a+1) in the rate which
is very large for values of a that are of interest, and
therefore the resulting codes are not very good.

If, however, f−1
p (x) were to have non-negative

power series coefficients, then we could use it to de-
fine a degree distribution and we would no longer lose
this factor of 1/(a + 1). We have found through di-
rect numerical computation in all cases that we tried,
that enough terms in the beginning of this power se-
ries are non-negative to enable us to define λ(x) by
an equation analogous to eq. (22), replacing gp(x)
by f−1

p (x). Of course, the resulting code is not the-
oretically guaranteed to have a threshold ≥ p, but
numerical computation shows that the threshold is
either equal to or very marginally less than p.

This design turns out to yield very powerful codes,
in particular codes whose performance is in every
way comparable to the irregular LDPC codes listed
in [8] as far as decoding performance is concerned.
The performance of some of these distributions is
listed in Table 1. The threshold values p are the
same as those in [8] for corresponding values of a
(IRA codes with right degree a + 2 should be com-
pared to irregular LDPC codes with right degree a,
so that the decoding complexity is about the same),
so as to make comparison easy. The codes listed in
[8] were shown to have certain optimality properties
with respect to the tradeoff between 1 − δ/(1 − R)
(distance from capacity) and a (decoding complex-
ity), so it is very heartening to note that the codes
we have designed are comparable to these.

We end this section with a brief discussion of the
case a = 1. In this case, it turns out that f−1

p (x)
does indeed have non-negative power-series coeffi-
cients. The resulting degree sequences yield codes
that are better than conventional RA codes at small
rates. An entirely similar exercise can be carried out
for the case of non-systematic RA codes with a = 1
and the codes resulting in this case are significantly
better than conventional RA codes for most rates.
However, non-systematic RA codes turn out to be
useless for higher values of a, as can be seen by man-
ually following the decoding algorithm for one iter-
ation, which shows that decoding does not proceed
at all. For this reason all the preceding analysis was

Table 1: Performance of some codes designed using
the procedure described in Section 3.4. at rates close
to 2/3 and 1/2. δ is the code threshold (maximum
allowable value of p), N the number of terms in λ(x),
and R the rate of the code.

a δ N 1−R δ/(1−R)
4 0.20000 1 0.333333 0.6000
5 0.23611 3 0.317101 0.7448
6 0.28994 6 0.329412 0.8802
7 0.31551 11 0.336876 0.9366
8 0.32024 16 0.333850 0.9592
9 0.32558 26 0.334074 0.9744
4 0.48090 13 0.502141 0.9577
5 0.49287 28 0.502225 0.9814

performed for systematic RA codes.

4. IRA CODES ON THE AWGN
CHANNEL

In this section, we will consider the behavior of
IRA codes on the AWGN channel. Here there are
only two possible inputs, 0 and 1, but the output
alphabet is the set of real numbers: if the x is the
input, then the output is y = (−1)x + z, where z
is a mean zero, variance σ2 Gaussian random vari-
able. For a given noise variance σ2, our objective
will be to find a left degree sequence λ(x) such that
the ensemble message error probability approaches
zero, while the rate is as large as possible. Unlike
the BEC, where we deal only with probabilities, in
the case of the AWGN we must deal with probability
densities. This complicates the analysis, and forces
us to resort to approximate design methods.

4.1. Gaussian Approximation

Wiberg [9] has shown that the messages passed in
iterative decoding on the AWGN channel can be well
approximated by Gaussian random variables, pro-
vided the messages are in log-likelihood ratio form.
In [6], this approximation was used to design good
LDPC codes for the AWGN channel.

In this subsection, we use this Gaussian approx-
imation to design good IRA codes for the AWGN
channel. Specifically, we approximate the messages
from check nodes to variable nodes (both informa-
tion and parity) as Gaussian at every iteration. For a
variable node, if all the incoming messages are Gaus-
sian, then all the outgoing messages are also Gaus-
sian because of (4). A Gaussian distribution f(x) is
called consistent [5] if f(x) = f(−x)ex for ∀x ≤ 0.
The consistency condition implies that the mean and
variance satisfy σ2 = 2µ. For the sum-product algo-
rithm, it has been shown [2] that consistency is pre-
served at message updates of both the variable and



check nodes. Thus if we assume Gaussian messages,
and require consistency, we only need to keep track
of the means. To this end, we define a consistent
Gaussian density with mean µ to be

Gµ(z) =
1√
4πµ

e−(z−µ)2/4µ. (27)

The expected value of tanh z
2 for a consistent Gaus-

sian distributed random variable z with mean µ is
then

E[tanh
z

2
] =

∫ +∞

−∞
Gµ(z) tanh

z

2
dz
�
= φ(µ). (28)

It is easy to see that φ(u) is a monotonic increas-
ing function of u; we denote its inverse function by
φ(−1)(y). Let µ

(l)
L and µ

(l)
R be the means of the mes-

sage from check nodes to variable nodes on the left
(i.e., information nodes) and on the right (i.e., par-
ity nodes) at the lth iteration. We want to obtain
expressions for µ

(l+1)
L and µ

(l+1)
R in terms of µ(l)

L and
µ

(l)
R . A message from a degree-i information node to

a check node at the lth iteration, is Gaussian with
mean (i− 1)µ(l)

L + µo, where µo is the mean of mes-
sage mo in (4). Hence if vL denotes the message on
a randomly selected edge from an information node
to a check node, the density of vL is

J∑
i=1

λiG(i−1)µ
(l)
L +µo

(z). (29)

From (29) and (28) we obtain:

E[tanh
vL
2

] =
J∑
i=1

λiφ((i− 1)µ(l)
L + µo). (30)

Similarly, if vR denotes the message on a ran-
domly selected edge from a parity node to a check
node,

E[tanh
vR
2

] = φ(µ(l)
R + µo). (31)

Because of (5) we have

E[tanh
m(u→ v)

2
] =

∏
w �=v

E[tanh
m(w → u)

2
]. (32)

Denote a message from a check node to an informa-
tion node, resp. parity node, by uL, resp, uR. Re-
placing E[tanh m(w→u)

2 ] with the right side of (30)
or (31) depending upon whether the message comes
from the left or right, (32) implies:

E[tanh
uL
2

] = E[tanh
vL
2

]a−1E[tanh
vR
2

]2

= (
J∑
i=1

λiφ((i− 1)µ(l)
L + µo))a−1(φ(µ(l)

R + µo))2,

E[tanh
uR
2

] = E[tanh
vL
2

]aE[tanh
vR
2

]

= (
J∑
i=1

λiφ((i− 1)µ(l)
L + µo))aφ(µ(l)

R + µo).

Using the definition of φ(µ) in (28), we thus have the
following recursion for µ

(l)
L and µ

(l)
R :

φ(µ(l+1)
L ) = (

J∑
i=1

λiφ((i− 1)µ(l)
L + µo))a−1 ×

(φ(µ(l)
R + µo))2, (33)

φ(µ(l+1)
R ) = (

J∑
i=1

λiφ((i− 1)µ(l)
L + µo))a ×

φ(µ(l)
R + µo). (34)

In order to have arbitrary small bit error probabil-
ity, the means µ

(l)
L and µ

(l)
R should approach infinity

as l approaches infinity. In the next subsection, we
derive a sufficient condition for this.

4.2. Fixed point analysis

We now assume that iterative dedoding has reached
a fixed point of (33) and (34), i.e., µ(l+1)

L = µ
(l)
L = µL

and µ
(l+1)
R = µ

(l)
R = µR. Denote

∑J
i=1 λiφ((i−1)µL+

µo) by x. From (30) we can see that 0 < x < 1 and
x → 1 if and only if µL → ∞. From (34) it’s easy
to show that µR is a function of x, denoted by f ,
i.e., µR = f(x). Then, dividing (33) by the square
of (34) gives us:

φ(µL) = φ2(µR)/xa+1 = φ2(f(x))/xa+1. (35)

Now replacing µL with φ(−1)(φ2(f(x))/xa+1) into
the definition of x, we obtain the following equation
for the fixed point x:

x =
J∑
i=1

λiφ(µo + (i− 1)φ(−1)(
φ2(f(x))
xa+1

)). (36)

If this equation doesn’t have a solution in the in-
terval [0, 1], then the decoding bit error probability
converges to zero. Therefore, if we have

F (x)
�
=

J∑
i=1

λiφ(µo + (i− 1)φ(−1)(
φ2(f(x))
xa+1

)) > x,

(37)
for any x ∈ [x0, 1), where x0 is the value of x at the
first iteration, then (the Gaussian approximation to)
iterative decoding is successful.

Since the rate of the code is given by (cf. (8)):∑
i λi/i

1/a +
∑
i λi/i

, (38)



to maximize the rate, we should maximize
∑
i λi/i.

Thus, under the Gaussian approximation, the prob-
lem of finding a good degree sequence for IRA codes
is converted to the following linear programming prob-
lem:
Linear Programming Problem. Maximize

J∑
i=1

λi/i, (39)

under the condition

F (x) > x, ∀x ∈ [x0, 1]. (40)

We have designed some degree sequences for IRA
codes using this linear programming methodology.
The results are presented in Tables 2 (code rate ≈
1/3) and 3 (code rate ≈ 1/2). After using the heuris-
tic Gaussian approximation method to design the de-
gree sequences, we used exact density evolution to
determine the actual noise threshold. (In every case,
the true iterative decoding threshold was better than
the one predicted by the Gaussian approximation.)

a 2 3 4
λ2 0.139025 0.078194 0.054485
λ3 0.222155 0.128085 0.104315
λ5 0.160813
λ6 0.638820 0.036178 0.126755
λ10 0.229816
λ11 0.016484
λ12 0.108828
λ13 0.487902
λ14

λ16

λ27 0.450302
λ28 0.017842
rate 0.333364 0.333223 0.333218
σGA 1.1840 1.2415 1.2615
σ∗ 1.1981 1.2607 1.2780

(EbN0
)∗(dB) 0.190 -0.250 -0.371

S.L. (dB) -0.4953 -0.4958 -0.4958

Table 2: Good degree sequences yielding codes of
rate approximately 1/3 for the AWGN channel and
with a = 2, 3, 4. For each sequence the Gaussian ap-
proximation noise threshold, the actual sum-product
decoding threshold, and the corresponding (EbN0

)∗ in
dB are given. Also listed is the Shannon limit (S.L.)

For example, consider the “a = 3” column in Table 2.
We adjust Gaussian approximation noise threshold

σGA to be 1.2415 to have the returned optimal se-
quence having rate 0.333223. Then applying the
exact density evolution program on this code, we
obtain the actual sum-product decoding threshold
σ∗ = 1.2607, which corresponds to Eb/N0 = −0.250
dB. This should be compared to the Shannon limit
for the ensemble of all linear codes of the same rate,
which is −0.4958 dB. As we increase the parame-
ter a, the ensemble improves. For a = 4, the best
code we have found has iterative decoding threshold
Eb/N0 = −0.371 dB, which is only 0.12 dB above
the Shannon limit.

The above analysis is for bit error probability. In
order to have zero word error probability, it is nec-
essary to have λ2 = 0. (This can be proved by the
following argument: if λ2 > 0, then in the ensemble,
as n→∞, the average number of weight 2 codewords
is bounded away from zero. Hence even a maximum-
likelihood decoder would have non-zero decoding er-
ror probability.) In Table 3, we compare the noise
thresholds of codes with and without λ2 = 0.

a 8 8
λ2 0.0577128
λ3 0.252744 0.117057
λ7 0.2189922
λ8 0.0333844
λ11 0.081476
λ12 0.327162
λ18 0.2147221
λ20 0.0752259
λ46 0.184589
λ48 0.154029
λ55 0.0808676
λ58 0.202038
rate 0.50227 0.497946
σ∗ 0.9589 0.972

(EbN0
)∗(dB) 0.344 0.266

Shannon limit 0.197 0.178

Table 3: Two degree sequences yielding codes of
rate ≈ 1/2 with a = 8. For each sequence, the ac-
tual sum-product decoding threshold, and the corre-
sponding (EbN0

)∗ in dB are given. Also listed is the
Shannon limit.

We chose rate one-half because we wanted to com-
pare our results with the best irregular LDPC codes
obtained in [5]. Our best IRA code has threshold
0.266 dB, while the best rate one-half irregular LDPC
code found in [5] has threshold 0.25 dB. These two
codes have roughly the same decoding complexity,
but unlike LDPC codes, IRA codes have a simple
linear encoding algorithm.



4.3. Simulation Results

We simulated the rate one-half code with λ2 =
0 in Table 3. Figure 2 shows the performance of
that particular code, with information block lengths
103, 104, and 105. For comparison, we also show the
performance of the best known rate 1/2 turbo code
for the same block length.
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Figure 2: Comparison between turbo codes (dashed
curves) and IRA codes (solid curves) of lengths n =
103, 104, 105. All codes are of rate one-half.

5. CONCLUSIONS

We have introduced a class of codes, the IRA
codes, that combines many of the favorable attributes
of turbo codes and LDPC codes. Like turbo codes
(and unlike LDPC codes), they can be encoded in
linear time. Like LDPC codes (and unlike turbo
codes), they are amenable to an exact Richardson-
Urbanke style analysis. In simulated performance
they appear to be slightly superior to turbo codes of
comparable complexity, and just as good as the best
known irregular LDPC codes. In our opinion, the im-
portant open problem is to prove (or disprove) that
IRA codes can be decoded reliably in linear time at
rates arbitrarily close to channel capacity. We know
this to be true for the binary erasure channel, but for
no other channel model. If this should turn out ot
be true, we would argue that IRA codes definitively
solve the problem posed implicitly by Shannon in
1948. If it is not true, then researchers should search
for an even better class of code ensembles.
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