19 Mar 2002 3:48 p.m.

Data Fusion Algorithms for Collaborative Robotic Exploration

Jeremy Thorpe and Robert McEliece.

Abstract.

In this paper we will study the problem of efficient data fusion in an ad hoc network of
mobile sensors (“robots”) using belief propagation on a graphical model similar to those
used in turbo-style decoding. We also devise a new metric for evaluating the performance
of general inference algorithms, including BP, which return “soft” estimates.

1. Introduction. The Robot Inference Problem.

In the future, NASA spacecraft sent to extraterrestrial planets to collect scientific data
may deploy a large number of small, inexpensive robots. Each of the robots may be
equipped with a number of sensors with which to measure its local microenvironment.
Individually, one robot’s measurements would convey little information about the global
situation. Collectively, however, the robots could overcome this by communicating with
their neighbors and fusing their data. The robots should thus be able to collectively infer a
great deal about the global environment. The trick is to do it with as little communication
and/or computation as possible.

In this paper, we will begin to explore the problem of designing efficient data fusion
strategies in an ad hoc network of robotic sensors, by first defining a simplified model for
the problem (Section 2), and then applying the celebrated belief propagation algorithm
[11] to obtain accurate estimates of the a posteriori probabilities about the environment
(Section 3). We will measure the accuracy of these estimates using a new criterion which
we derive axiomatically in the appendices.

2. A Simplified Model for the Robot Inference Problem.

In our model, the unknown environment is characterized by a random binary n-vector
X = (Xy,...,X,), with the component X;’s chosen independently, and Pr{X; = +1} =
Pr{X; = —1} = 1/2. The sensor network consists of m robots, and the jth robot’s ability to
sense the environment is characterized by an n-vector g; = (g;.1,--.,9;n) € {0,+1,—1}".
We assume each robot has exactly s nonzero components, which means it can sense exactly
s components of X. (A zero component of g; means that the robot cannot sense the
corresponding component of X.) The measurement y; of the environment x by a robot g;
is the dot product y; = x-g;. Thus the aggregate evidence about a particular environment
@ provided by the robot sensor network is the vector y = (y1,...,ym) = Gz, where G is
the m x n matrix whose (i, j)th entry is g, ;.

For future reference, we introduce the following notation. If y is an n-vector, and j
is an integer in the range j = 1,...,m, y’ denotes the components of y corresponding
to the nonzero components of g;. Thus for example if & represents the environment, x’
represents the part of the environment sensed by the jth robot. In this notation, gg denotes

the vector g; with its zero components deleted. As a result, we have y; = x7 - g?.

For example, if n = 6, m = 4, and and s = 3, a possible choice for G is displayed

below.
1 2 3 4 5 6

1 /-1 +1 41
2 +1 -1 -1
G= 3 -1 -1 +1
4 \ +1 -1 +1

Figure 1 gives a graphical representation of this robot-environment scenario. Note that we
have the following “local environments”:

1) -

Also, we have

gl = (—1,+1,+1)
@ g2 = (+1,-1,-1)
g3 = (=1,-1,+1)
gh = (4+1,-1,+1).

Estimates

Evidence

Figure 1. A robotic inference network. The
topology of the network reflects the matrix G.
(There is an edge from Y; to X; if g;; # 0.)

The basic problem is to “infer” the environment X = (X7,..., X,,) using the evidence
provided by the sensor outputs Y7, ..., Y,,. In other words, for each indexi € {1,...,n}, we
wish to produce an estimate of the conditional probabilites Pr{X; = +1|Y } and Pr{X; =
—1|Y}, where Y = (Y1,...,Y,,). In principle, the exact values of these a posteriori
probabilites can be obtained by Bayes’ rule:!

Pr{Y = y|X; = ¢} Pr{X; = ¢}
Pr{Y =y}
x Pr{Y = y|X; = €}.
Unfortunately, the direct computation of the likelihoods Pr{Y = y|X; = €} (for ¢ = +1)
requires testing each of the 2™ possible X'’s for compatibility with Y:

Zw:xi:e Pr{Y =y|X =z} Pr{X =z}

Pr{X; =€|Y =y} =

Pr{Y =y|X; =€} =

Pr{X,; =€}
x Z Pr{Y =y|X = x}
x Z iy — Gz), (3)

where 0 is the Kronecker delta function. If n is large, this calculation will be prohibitively
complex, and alternative methods must be adopted. We discuss once such method, loopy
belief propagation, in the next section.

! In the following calculations, we use the “is proportional to” symbol () in which
the implied proportionality constants are chosen so that the quantities with ¢ = +1 and
€ = —1 sum to one.

3. Loopy Belief Propagation.

Belief Propagation is a general algorithm which solves, exactly in some cases and approx-
imately in others, a certain class of probabilistic inference problems. Roughly speaking,
BP is applicable whenever the inference problem can be represented by a graphical model
of a particular kind. The term “belief propagation” was coined by Pearl [9, 11], using a
Bayesian network as the underlying graphical model; alternative formulations of equivalent
algorithms are “probability propagation” on junction trees or factor graphs [12, 8, 7], the
“sum-product algorithm” on normal graphs [4], and the “generalized distributive law” [1,
2] on junction trees or graphs. In the following discussion, we will use the GDL/junction
graph formulation.

The GDL is an iterative algorithm which works by making progressively improving
estimates of the a posteriori probabilities (or beliefs) about a set of hidden variables, by
passing messages on a junction graph. If the junction graph is cycle-free, the GDL solves
the inference problem exactly [9,1]. However, if cycles are present, then the GDL’s solution
is only approximate. This is sometimes called loopy BP [2,5,13].

A belief propagation decoder for the robotic inference problem described in Section 2
is shown in Figures 1 and 2. The graph in Figure 1 represents a Bayesian network for
the n + m random variables Xq,...,X,, and Y7,...Y,,. This network is in the form of
a bipartite graph, in which the hidden variables to be inferred are on the top, and the
evidence nodes are on the bottom.

The GDL algorithm works by passing messages back and forth between the X; nodes
and the Y; nodes. Each of these messages is a function f(e), for e € {0,1}, such that
0 < f(e) < 1. The message from X; to Y; is denoted by m; ;(€), and can be interpreted
as an estimate of the probability Pr{X,; = €|Y; = y;}, for ¢ = £1. The message from
Y; to X, is denoted by p;(e), and can be interpreted as an estimate of the likelihood
Pr{Y; = y;|X; = €}, for e = £1.

Initially, the p; ;(€)’s are set to 1. Recursively, the m-messages are calculated by the
rule

(4) m; j(€) o H fk,i(€),

k#j
where the constant of proportionality is chosen so that m; ;(0) + m; (1) = 1. The p-
messages are updated by the rule

(5) f15,i(€) = Z O‘j(mj)Hmk:,j(mk)'

a}j:xz:e ki

In (5), the function a;(x?) is (in the parlance of [1]) the local kernel at Y;, and is defined

as follows: .
aj(x!) = ! ?fmj.'gi_yj
0 ifax’ - gj #y;.

4

(For the notation gg, see (1) and (2).) In words, aj(x’) tests the s-vector @’ for compati-
bility with the observed measurement y;.

An iteration of the algorithm consists of a complete updating of all messages in both
directions. After any iteration, we can choose (or not) to compute beliefs in the components

of x:

() = a [(o).

These beliefs are the output of the algorithm.

Figure 2. The message-passing scheme of the GDL
(Cf. Figure 1). The m; ;(e)’s are approximations
to Pr{X; = €|Y; = y;}, and the p;,(€)’s
are approximations to Pr{Y; = y;|X; = €}.

4. Experimental Results.

We applied the loopy BP algorithm described in Section 3 to to robot inference problem
described in Section 2, using the graphical model shown in Figure 1. The results are shown
in Figures 3 and 4. The parameters are s = 10 non-zero elements per robot, with n = 20
hidden variables in Figure 3 and n = 50 in Figure 4.2

In Figures 3 and 4 the independent variable (horizontal axis) is m, the number of
robots, and the dependent variable (vertical axis) is the “average uncertainty,” measured in
bits, per component of X. By this we mean the following. For each run of our simulation,
we generated an n-bit “environment” (xi,...,z,) drawn randomly from the set of 2"
possibilities. Then we selected the entries of the m x n matrix G randomly, subject to the
constraint that each row have exactly s nonzero entries, and calculated the corresponding
evidence vector y = Gx. Then we ran the loopy BP inference algorithm, which returned a
set of beliefs (b;(+1),b;(—1)) for i = 1,...,n, where b;(¢) denotes the algorithm’s belief in
the event X; = e. We then defined the “uncertainty” of the algorithm for that particular
run as the quantity

n

1
A:—E —log, b;(x;),
o 0gy by (;)

i=1

(An axiomatic justification of this measure is given in the Appendices.) In Figures 3 and
4, the vertical axis represents the average value of A, where the averaging was done over
the set of runs.

In Figure 3, we see that it takes 20 sensors five iterations to reduce the average
uncertainty to approximately 0.1 bit for each of 20 bits in X, compared to about half that
number for an exhaustive exact solution. In Figure 4 we see that it takes about 34 sensors
five iterations to reduce the uncertainty of 50 components to the same value.(In this case,
an exhaustive exact solution is not feasible.) 3 Note that the ratio m/n for an uncertainty
of 0.1 bit per environment bit is 20/20 = 1.00 in Figure 3 and 34/50 = 0.68 in Figure 4,
so that an economy of scale is evident. We suspect that with s = 10, as n increases, the
ratio of robots to environment components will decrease to a value of about 0.34, based
on the following information-theoretic argument.

2 Tt is important to understand that despite the “message-passing” nature of this algo-
rithm, it is nevertheless centralized, i.e. the observations Y7i,...,Y,, must first be trans-
mitted to a central location, e.g. a base station, before the data fusion begins. A study of
decentralized BP remains an interesting challenge.

3 If the number of iterations is increased, simulations show that the performance is not
improved in either case.

Each Y is has a binomial density function, i.e.,

S

Pr{Y = s — 2k} — %(k) — b(s, k),

for k=0,1,...,s, so that the entropy of each Y is

hp(s) ==Y b(s,k)log, b(s, k).

k=0

Thus the minimum conceivable number of s-component sensors needed to determine X =
(X1,...,X,) exactly is H(X)/hg(s) = n/hp(s), i.e., for m < n/hp(s), exact inference
is impossible. For s = 10 we have hp(10) = 2.70643, and so in Figures 3 and 4 we
have placed an “x” on the horizontal axis at the point m = 20/2.70643 = 7.39 and
m = 50/2.70643 = 18.47, respectively, to represent this entropy bound.

Finally, it is worth noting that with loopy BP, the number of messages which must
be passed at each iteration is 2ms, which is twice the number of edges in the graph of
Figure 1. Thus if I denotes the number of iterations, the total number of messages passed (a
reasonable measure of complexity) is 2ms/. On the other hand, an exhaustive brute-force
calculation of the exact a posteriori probabilities (see eq. (3)) requires the calculation of
G for all 2™ values of @, which requires about 2"ms arithmetic operations. Inn summary:

Complexity of Direct Solution ~ 2"ms

Complexity of Loopy BP &~ 2I'ms.

Thus provided the number of iterations is kept small, loopy BP is much less complex than
a brute-force approach.

10°

— 1 iteration
—— 2 iterations
—— 3 iterations
—— 4 iterations
—— 5 iterations
search (bit)

a posteriori uncertainty per bit

X entropy bound

107 2 ! ! ! ! ! ! ! ! !
0 2 4 6 8 10 12 14 16 18 20

number of sensors

Figure 3. Loopy BP inference performance for an
unknown environment X with n = 20 components,
where each robot senses s = 10 components of X.

5. Conclusions and Suggestions for Further Work.

In this paper, we have built on expertise gained in solving the probabilistic inference
problem in the context of decoding algorithms [6,10] in particular the approximate and
exact solutions obtained using belief propagation on networks with and without cycles, to
the problem of designing intelligent communication networks of collaborative robots. The
underlying idea, of course, is that the problem of interpreting scientific data gathered at
separated locations is an instance of the probabilistic inference problem. Our results are
quite promising, and suggest that loopy belief propagation may represent a low-complexity,
high accuracy, approach.

As for further work in this subject, we might suggest the following topics.

e As we noted in Section 4, despite the message-passing nature of loopy BP, is is neverthe-
less a centralized algorithm. It would be interesting to investigate BP-type algorithms in

8

10°

1 iteration

2 iterations
3 iterations
4 iterations
5 iterations
entropy bound

a posteriori uncertainty per bit

<[]

107 2 ! ! ! ! ! !
0 5 10 15 20 25 30 35 40 45 50

number of sensors

Figure 4. Loopy BP inference performance for an
unknown environment X with n = 50 components,
where each robot senses s = 10 components of X.

which the messages were actually passed among the sensors, without the need for a central
base station.

e In a dynamic data-gathering situation, the robot observations will be updated periodi-
cally. In such a case, it would be important to know how rapidly loopy BP could react to
these changes.

e In a distributed version of loopy BP, the transmitted messages may be subject to errors.
How sessitive is loopy BP to occasional message errors?

e Finally, in Appendix 1, we remarked that Axiom 1 was reasonble if there is no notion of
“closeness” of an incorrect prediction. It would be interesting to study penalty functions
when there ¢s an a priori notion of closeness.

Appendix A. Penalty Functions for Approximate Inference Algorithms.

In this appendix, we discuss possible criteria with which to judge an oracle which gives
estimated probability distributions. Giving three well motivated axioms, we arrive at a
single suitable measure, viz. the logarithm of the probability estimate of the event that
actually occurs.

There are many possible applications for this theory besides the robot inference prob-
lem discussed above. In principle, it can be used to evaluate the accuracy of any source of
probabilistic information. For example, we can compare the weathermen of different TV
stations to see who is the the most accurate. Or we could rank game-playing computer
algorithms based on the accuracy of their predictions of the moves made in a large number
of professional games.

Consider a discrete random variable X with (hidden) density function p(z), for = €
A={ay,...,a,}. Let b(x) be an estimate of p(z), called a “belief” about X, computed by
an inference algorithm using some preliminary or indirect observations of X. We would like
to measure the goodness of b as predicter of p. To this end, we assume we have a function
A(b, z), which is interpreted as the penalty assessed the belief vector b if an experimental
outcome is X = x. The penalty cannot depend on p(zx), because p(z) may be unknown,
or ill-defined. It may be unknown because it cannot be efficiently calculated (e.g., what
is the probabilty that a number selected randomly from 1 to 10%° will have fewer than 6
prime factors?); it may be ill-defined because the experiment is in principle not repeataple
(e.g., what will the weather be on December 18, 20027).

We make the following three axiomatic assumptions about the penalty function A.

Axiom 1.

(6) bl(a:) = bz(ﬂ?) = A(bl,$) = A(bg,$)

Axiom 1 says that if Algorithm 1 and Algorithm 2 both assign the same belief to the actual
experimental outcome, then both algorithms are assessed the same penalty, regardless of
the beliefs they may assign to the other possible outcomes. Thus

(7) Ab,x) = f(b(z))

for some function f : [0,1] — R. Axiom 1 seems reasonable if there is no notion of
“closeness” of an incorrect prediction, in which case a prediction is either right or wrong.

Axiom 2. For all possible p(z)’s and b(x)’s,
(8) Ep(A(p, X)) < Ep(A(b, X)),

10

which because of (7) is

> p@)f(p(x) <D pl@) f(b(x))

€A TEA

Axiom 2 requires that the belief about p(z) with minimum average penalty must be p(x)
itself.

Axiom 3.
b(x) =1= A(b,z) = 0.

Axiom 3 specifies that if the algorithm predicts the correct outcome with certainty, the
penalty is 0.

It is easy to see that a penalty function defined by

1

A(b,x) =log e

(for an arbitrary base of the logarithm) satisfies Axioms 1, 2, and 3. It is perhaps surprising
that for n > 3, this is the only possibility:

Theorem. If Axioms 1, 2, and 3 hold,* and n > 3, then
A(b,z) = Klnb(x)

for some constant K < 0.%

Proof: Let A = {a1,...,a,}, and let p; = p(a;), b; = b(a;), i = 1,...,n. By Axiom 1,
A(b,x) = f(x), for some f(x). Then Axiom 2 can be written as

n

sz (pi) < Zp £(b:),

4 In fact, our proof also requires that the function f(x) in (7) have a continuous first
derivative. We conjecture that continuity of f(x) is sufficient for Theorem 1 to hold,
however.

> The constant K, in effect, determines the base of the logarithm. We could write
an axiom that enforces say K = —1, but we prefer to leave the base of the logarithm
unspecified, which is in keeping with information theory tradition. Also note that for
K = 0 the penalty function is identically zero, which satisfies the axioms but is obviously
useless.

11

or equivalently

(9) Zpi (f(ps) — f(bs)) <0.

Now choose (p;)I_; € S2, the interior of S,,, the n-dimensional simplex:
Sn={p:p1+-+p,=1,p >0}
Sp={p:p1+-+p,=1p; >0}

and choose (€1,...,€,) so that
n

(10) > e=0.
i=1

Then for |A| sufficiently small, (b;);; = (pi + Aei)i—; € Sn. But by the Mean Value
Theorem,

f(pi + Aei) = f(pi) + Aeif (pi + are;),

for some 0 < a < 1, so that (9) becomes
(11))\sz‘f’(pi + ae;)e; > 0.
i=1

But since (11) holds for arbitrarily small values of A, both positive and negative, and
pi + ale; — p; as A — 0, it must be true that®

(12) qu;f/(pi)ei = 0.

i=1

for all (e, ...,€,) satisfying (10). By taking e; = +1, ¢, = —1, and ¢; = 0 for all j # 1,7,
we see that

(13) prf'(p1) = - = paf (pn),
for all p € Sy.

We pause for a refreshing Lemma.

6 This is the step that requires f/(z) to be continuous.

12

Lemma. Suppose n > 3. If g(x) is a real-valued defined on (0,1) with the property that
whenever p = (p1,...,pn) € S,

(14) g(p1) == g(pn),

then there is a constant K such that g(x) = K for all x € (0,1).

Proof: By taking p = (z,1 — 2,0,...,0), in (14), we find that
(15) g(x) =g(1 —x), forall 0 <z < 1.
On the other hand, by taking p = (1/2,2,1/2 — z,0,...,0), we find that
(16) g(x) =g¢(1/2), for 0 < z < 1/2.
Combining (15) and (16), we see that
g(x) =¢(1/2) =K, for 0 <z < 1. .
Returning to the proof of Theorem 1, by combining (13) with the Lemma, we see that
there is a constant K such that pf’(p) = K for 0 < p < 1, so that
f(p)=Klnp+ K'.

for a constant K’. But by Axiom 3, f(1) = 0, which forces K’ = 0, i.e., f(p) = K Inp for
some value of K. If K <0, then by Jensen’s inequality, i.e.,

Ey(A(p, X)) =K pilnp; <K Y pilnb; = E,(A(b, X)),

by Jensen’s inequality, so that Axiom 2 is satisfied, whereas if K > 0, the inequality goes
the wrong way. Thus f(p) = K Inp for some K < 0, as asserted. =

The quantity E,A(b, X) has a nice information-theoretic interpretation, as shown by
the following theorem.

Theorem 2. With A(b,z) = —logb(z), we have
Ep(A(b,x)) = H(p) + D(p ||),

where H (p) is the entropy of p,

and D(p||b) is the Kullbach-Leibler distance (or relative entropy) between p and b, defined
by [3, Section 2.3]
D(p|lb)=) p(= log

z€eA

Thus if p(x) is the underlying density function, the minimum possible average penalty
for any inference algorithm is H(p), which is attained if the inference algorithm selects
b(z) = p(x) for all x.

Proof: We have

EP(A(b7 :L“)) = ZP(I)A(ba I)

x

= — > p(x)logb(z)

xT

- _ Zp(af)) (log p(z) + log b(x) — log p(x))
= —Zp(log p(z Zp (log b(x) — log p())

=H(p)+D(p|b). =

Appendix B. The Case n = 2.

To prove Theorem 1, we assumed that n, the number of possible outcomes, is > 3. This
assumption is necessary, as the following Theorem (whose proof we omit) demonstrates.

Theorem 2. Let n = 2. Then Axioms 1, 2, and 3 hold if and only if
A(b7 :L‘) = f(x)7
where f(x) is of the form

(17) f@) = [2a,

for some function g(t) which satisfies

g(t) >0 and g(t) =g(1 —t) for all t € (0,1). .

Theorem 2 gives infinitely many essentially different penalty functions for n = 2. For
example, if g(t) =1 for all ¢t € (0,1), (17) gives

f(l') = —h’lﬂ'},

14

in accordance with Theorem 1. However, if g(t) = 2¢(1 — ¢), then

f(:l?) = (1 - 1‘)2,

which satisfies Axioms 1, 2, and 3 for n = 2 but violates Axiom 2 for n > 3. Despite
this multitude of possible penalty functions for n = 2, because of Theorem 1, we feel it is

unnatural to choose any function other than f(z) = —log(z), even if n = 2.
References.
1. S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE Trans. Inform.

10.

11.

Theory, vol. 46, no. 2 (March 2000), pp. 325-343.

S. M. Aji and R. J. McEliece, “The generalized distributive law and free energy
minimization,” Proc. 2001 Allerton Conf.

T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: John
Wiley and Sons, 1991.

G. D. Forney, Jr.. “The sum-product algorithm,”

B. J. Frey and D. J. C. MacKay, “A revolution: Belief propagation in graphs with
cycles,” Proc. 1997 Neural Information Processing Systems Conference, in press.

R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, Mass.: MIT Press,
1963.

F. R. Kschischang and B. J. Frey, “Iterative decoding of compound codes by prob-
ability propagation in graphical models.” IEEE J. Sel. Areas Comm. vol. 16, no. 2
(Feb. 1998), pp. 219-230.

F. V. Jensen, An Introduction to Bayesian Networks. New York: Springer-Verlag,
1996.

J. H. Kim and J. Pearl, “A computational model for causal and diagnostic reasoning,”
Proc. 8th International Joint Conf. Artificial Intelligence (1983), pp. 190-193.

R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as an instance
of Pearl’s ‘belief propagation’ algorithm.” IEEE J. Sel. Areas Comm. vol. 16, no. 2
(Feb. 1998), pp. 140-152.

J. Pearl, Probabilistic Reasoning in Intelligent Systems. San Mateo, CA: Morgan
Kaufmann, 1988.

15

12.

13.

14.

15.

G. R. Shafer and P. P. Shenoy, “Probability propagation,” Ann. Math. Art. Intel.,
vol. 2 (1990), pp. 327-352.

Y. Weiss, “Correctness of local probability propagation in graphical models with
loops,” submitted to Neural Computation, July 1998.

J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief propagation,”
pp- 689-695 in ” Advances in Neural Information Processing Systems 13,” eds. Todd
K. Leen, Thomas G. Dietterich, and Volker Tresp.

J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Bethe free energy, Kikuchi approx-

imations, and belief propagation algorithms,” available at www.merl.com/papers/
TR2001-16/

16

