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A General Computational Problem

• Variables {x1, . . . , xn}, xi ∈ A = {0, 1, . . . , q − 1}.
• R = {R1, . . . , RM}, a collection of subsets of {1, 2, . . . , n}.
• A set of nonnegative “local potentials” {αR(xR) : R ∈ R}.
• Define the global (Boltzmann) probability density func-
tion;

B(x) =
1
Z

∏

R∈R
αR(xR),

where

Z =
∑

x∈An

∏

R∈R
αR(xR) (Partition function)

(F = − lnZ = Helmholtz free energy).
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A General Computational Problem, Continued

Problem: Compute, exactly or approximately, the
Helmholtz free energy F and some or all of the local marginal
densities of the Boltzmann density:

BR(xR) =
∑

xRc∈ARc

B(x)

=
1
Z

∑

xRc∈ARc

∏

S∈R
αS(xS),

for R ∈ R.



Applications:

Appropriately interpreted, this computational problem in-
cludes:
• Turbo/LDPC decoding.
• Probabilistic inference in Bayesian networks.
• Finite Fourier transforms.
• Free energy computations in statistical physics.

...

(But we won’t discuss these applications)
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A Simple Example.

Alphabet: A = {0, 1}.
Local domains: R = {{1, 2, 3}, {1, 3, 4}, {2, 3, 5}, {3, 4, 5}}.
Local potentials:

αi(x, y, z) =
{

1/2 if x = y = z
0 otherwise

i = 1, 2, 3, 4.
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Local domains: R = {{1, 2, 3}, {1, 3, 4}, {2, 3, 5}, {3, 4, 5}}.
Local potentials:

αi(x, y, z) =
{

1/2 if x = y = z
0 otherwise

i = 1, 2, 3, 4.

Answers: Z = 1/8
F = ln 8.

B(x1, x2, x3, x4, x5) =
{

1/2 if x1 = x2 = · · · = x5

0 otherwise.

Bi(x, y, z) =
{

1/2 if x = y = z
0 otherwise



A Statistical Physics Approach

S

si

• S = {s1, . . . , sn} = n identical particles.
• “Spin” of si = xi ∈ A = {0, 1, . . . , q − 1}.
• System “configuration” x = (x1, x2, . . . , xn).
• E(x1, . . . , xn) = energy of configuration x. (Hamiltonian)
• = −∑

R∈R lnαR(xR).
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A Statistical Physics Approach

• b(x) = “Trial” probability of configuration x.
• Average energy: U =

∑
x∈An b(x)E(x).

• Entropy: H = −∑
x∈An b(x) ln b(x).

• Variational free energy:

F̃ (b) = U − H.
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A Famous Theorem from Statistical Mechanics

Theorem.
F̃ (b) ≥ F,

with equality if and only if

b(x) = B(x) =
1
Z

e−E(x),

the Boltzmann-Gibbs, or equilibrium, density.



Proof of the Famous Theorem

A simple calculation shows that

F̃ (b) = D(b ‖ B) + F.

Hence
F̃ (b) ≥ F,

with equals iff b = B.



An Important Corollary

Corollary.

F = min
b(x)

F̃ (b)

B(x) = arg min
b(x)

F̃ (b).

• Suggests a possible method for computing F (and B(x)),
but as it stands, it’s too complex . . .



An Important Corollary

Corollary.

F = min
b(x)

F̃ (b)

B(x) = arg min
b(x)

F̃ (b).

• Suggests a possible method for computing F (and B(x)),
but as it stands, it’s too complex, and anyway it doesn’t
yield the marginals BR(x) . . .



A Solution Using Belief Propagation on a Partially Ordered Set

(But What is a Partially Ordered Set?)
• A finite partially ordered set is a finite set P together with
a binary relation, denoted ≤, which satifies the following
three axioms:

1. For all ρ ∈ P , ρ ≤ ρ. (reflexitivity)
2. If ρ ≤ σ and σ ≤ ρ, then ρ = σ. (antisymmetry)
3. If ρ ≤ σ and σ ≤ τ , then ρ ≤ τ . (transitivity)
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Hasse Diagrams for Three Posets



Overcounting Numbers for Posets

We assign an overcounting number φ(ρ) to each ρ ∈ P , such
that

(1)
∑

ρ:ρ≥σ

φ(ρ) = 1, for all σ ∈ P .

The overcounting numbers φ(ρ) are integers and are deter-
mined uniquely by (1).



Some Overcounting Numbers

+1 +1 +1

-1 -1 -1

+1 +1

-1

+1 +1 +1

-1 -1 -1

+1

+1 +1

-2 -2

+2

+1

+2

-2



How to Distribute the Local Potentials in a Given Poset P .

Step 1: Assign each variable xi to one or more elements of
P . If Pi = {ρ ∈ P : xi is assigned to ρ}, then we require:

• Pi is connected;
• Pi is closed under ≥, i.e., if xi is assigned to ρ it is also
ssigned to all of ρ’s “superiors;”
• φ(Pi) = 1, i.e., the net number of appearances of xi is 1.

We denote by D(ρ) (the local domain at ρ) the set of vari-
ables which are assigned to ρ.



How to Distribute the Local Potentials in a Given Poset P .

Step 2: Assign each local potential αR(xR) to one or more
elements of P . If PR = {ρ ∈ P : αR(xR) is assigned to ρ},
then we require:

• R ⊆ D(ρ) for all ρ ∈ PR, i.e., the local domain at ρ
supports αR(xR);
• PR is connected;
• PR is closed under ≥, i.e., if αR is known to ρ it is also
known to all of ρ’s superiors;
• φ(PR) = 1, i.e., the net number of appearances of αR(xR)
is 1.



Example: “Generalized Belief Propagation” (YF&W)

• R = {{1, 2}, {2, 3}, . . . , {8, 9}}:
1 2 3

4

7

5

8 9

6

• Here is the poset:
+1 +1 +1+1

-1 -1 -1 -1

+1



The Trick is to Cluster the Variables

1 2 3

4

7

5

8 9

6

{5}

{1,2,4,5} {2,3,5,6} {4,5,7,8} {5,6,8,9}

{2,,5} {4,5} {5,6} {5,8}

+1 +1 +1 +1

-1 -1 -1 -1

+1



The PBP Algorithm: The Messages.

• Throughout the algorithm, each edge e = (ρ, σ) of the
Hasse diagram carries a “message” me.
• The message me on the edge e is a function on the domain
of σ: me = me(xσ).
• Example:

e

{x
1

, x
2

, x
4

, x
6

}

{x
2

, x
4
, x

6
}

ρ

σ

(x2, x4, x6) me(x2.x4, x6)
(0, 0, 0) 1
(0, 0, 1) 0

...
...

(1, 1, 1) 0



The PBP Algorithm: Calculating Beliefs.

• For a given set of messages {me : e ∈ E}, we define the
belief at ρ as the following probability density on the domain
at ρ:

bρ(xρ) ∝ αρ(xρ)
∏

e∈E(ρ)

me(xfin e),

where the normalization is such that
∑

xρ
bρ(xρ) = 1.

• Here αρ(xρ) is the local potential at ρ, and E(ρ) represents
the set of messages which are“fused” at ρ.
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The Messages that are “Fused” at ρ

bρ(xρ) ∝ αρ(xρ)
∏

e∈E(ρ)

me(xfin e),

• The messages in E(ρ) are those that originate outside ρ’s
“field of view” but terminate inside it.

ρ

e ∈ E(ρ) e

init(e)

fin(e)



The PBP Algorithm: Updating the Messages.

• An edge e = (ρ, σ) is said to be consistent with respect to
a given set {me : E ∈ E} of messages if

∑

xρ\xσ

bρ(xρ) = bσ(xσ) for all xσ ∈ AD(σ).

In words, this says that the belief at ρ in xσ, obtained by
marginalization, agrees with the belief at σ in xσ.



Example of Edge Consistency

e

{x
1

, x
2

, x
4

, x
6

}

{x
2

, x
4
, x

6
}

ρ

σ

• e = (ρ, σ) is consistent if
∑

x1∈A

bρ(x1, x2, x4, x6) = bσ(x2, x4, x6)



Example of Edge Consistency

e

{x
1

, x
2

, x
4

, x
6

}

{x
2

, x
4
, x

6
}

ρ

σ

• e = (ρ, σ) is consistent if
∑

x1∈A

bρ(x1, x2, x4, x6) = bσ(x2, x4, x6)



The PBP Algorithm: The Update Rule

• When the message me is updated, it is adjusted so that
the edge e becomes consistent. Explicitly,

me(xσ) ∝
∑

xρ\xσ

(
αρ\σ(xρ)

∏
g∈E(ρ)\E(σ) mg(xfin(g))

)

∏
f∈E(σ)\{E(ρ)∪e} mf (xfin(f))

.

• The PBP algorithm proceeds by updating messages ac-
cording to this rule. The hope is that the messages will
converge to a fixed point whose associated beliefs are good
approximations to the desired marginals, i.e.,

bρ(xρ) ≈ Bρ(xρ),

where B(x) is the global or “Boltzmann” density.
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How Well Does it Work?

• A series of experiments:
• Local domains:

R = {{1, 2, 3}, {1, 3, 4}, {2, 3, 5}, {3, 4, 5}}.

• Local potentials: α1(x1, x2, x3), α2(x1, x3, x4), α3(x2, x3, x5),
and α4(x3, x4, x5) selected at random from the 8-simplex.
• There are many posets that support this choice of do-
mains; we will investigate only three.
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Poset Number One (Junction Graph Construction)
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Poset Number Two (Factor Graph Construction)

+1 +1 +1 +1

-1 -1 -3 -1 -1

{1,2,3} {1,3,4} {3,4,5} {2,3,5}

{1} {2} {3} {4} {5}



Poset Number Three (Cluster Variational Method)
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Poset Number Two (Factor Graph Construction)
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Poset Number Three (Cluster Variational Method)
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The Problem is Non-Convergence, and is Easily Repaired.

yn+1 = F (yn) (too aggressive)

yn+1 =
√

ynF (yn)

yn+1 = y1−w
n F (yn)w for 0 < w < 1.
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Why Does It Work?

• No one really knows, but . . .

• The PBP algorithm can be viewed as an algorithm for
minimizing a certain “energy” function. There is a one-to-
one correspondence between the fixed points of PBP and
the stationary points of the energy.
• (It appears that the attractive fixed points correspond to
the local minima of the free energy.)
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minimizing a certain “energy” function. There is a one-to-
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the local minima of the free energy.)



More Precisely: The Bethe-Kikuchi Approximation

• We know
F = min

b(x)
F̃ (b(x))

B(x) = argmin
b(x)

F̃ (b(x)).

• We approximate F̃ (b(x)) with something that depends
only on the poset P and the marginals bρ(xρ) of b(x):

F̃P (b(x)) =
∑

ρ∈P

φ(ρ)F̃ρ(bρ(xρ),

where F̃ρ(bρ(xρ)) is the local free energy at ρ, defined as
∑

xρ

bρ(xρ)Eρ(xρ) +
∑

xρ

bρ(xρ) ln bρ(xρ).
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An Analogy:

• Black line = F̃

• Colored line = F̃P .
• The hope is that min{bρ(xρ)}) F̃P ≈ minb(x) F̃ = F .
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Poset Number Two — The BK Approximation
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Poset Number Three — The BK Approximation
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Some Open Questions

• What is the “best” poset for a given MPD problem?
• Prove (or find a counterexample) that the stable fixed
points of PBP correspond to the local minima of the BK
variational free energy.
• Can the PBP algorithm always be made to converge using
the “smoothing” trick?
• What is the relationship between the BK approximate free
energy and the exact (Helmholtz), free energy?
• Can other combinatorial optimization methods, e.g. sim-
ulated annealing, be used to minimize F̃P , thereby leading
to alternative “BP” algorithms?
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